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Abstract A general solution for a thermoviscoelastic trimaterial combined with a point heat source and a point
heat sink is presented in this work. Based on the method of analytic continuation associated with the alterna-
tion technique, the solutions to the heat-conduction and thermoelastic problems for three dissimilar, sandwiched
media are derived. A rapidly convergent series solution for both the temperature and stress field, expressed in
terms of an explicit general term of the corresponding homogeneous potential, is obtained in an elegant form. The
hereditary integral in conjunction with the Kelvin–Maxwell model is applied to simulate the thermoviscoelastic
properties, while a thermorheologically simple material is considered. Based on the correspondence principle, the
Laplace transformed thermoviscoelastic solution is directly determined from the corresponding thermoelastic one.
The real-time solution can then be solved numerically by taking the inverse Laplace transform. A typical example
concerning the interfacial stresses generated from a combined arrangement of a heat source and sink are discussed
in detail. The corresponding thin-film problem is also discussed.

Keywords Analytic continuation · Interfacial stresses · Thermoviscoelasticity · Trimaterial

1 Introduction

Stresses induced by the thermal mis-match of dissimilar media have been an important topic since temperature
differences are rapidly increasing in modern electron devices. Thermal stresses become the main criterion to cause
multilayered media failure. Moreover, with the advance in material science, many multilayered components are
polymer-based making them particularly sensitive to the temperature change. The interaction between time and tem-
perature in multilayered viscoelastic structures has important applications because in recent years these components
are widely used in numerous engineering designs.

The analysis of the multilayered problem is complicated since the solutions must be forced to satisfy the continuity
conditions of multiple interfaces. Consequently, the conventional approach to stress analysis for multilayer-media
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100 G. A. Porter et al.

problems requires to solve a system of simultaneous equations with a large number of unknown constants. For
example, Iyengar and Alwar [1], as well as Chen [2], solved the semi-infinite medium composed of isotropic lay-
ers. Some more efficient methods dealing with the complicated continuity conditions have been proposed, and are
mentioned below. Based on the transfer-matrix approach, which is expressed in terms of infinite series expansions
allowing solutions with various orders of approximation to be obtained, Bufler [3] solved the elasticity problem in a
multilayered medium. Based on the Fourier-transform technique in association with the stiffness-matrix approach,
Choi and Thangjitham [4,5] obtained solutions for multilayered anisotropic elastic media. Choi and Earmme [6,7]
employed the alternating technique to obtain solutions for singularity problems in an isotropic and anisotropic
trimaterial. Chao and Chen [8] used analytic continuation combined with the alternating technique to solve the
thermoelastic problem of an isotropic trimaterial.

For the thermoviscoelastic analysis, several authors [9,10] derived the appropriate forms of free energy and the
corresponding stress–strain relations and dissipation energy for a thermorheologically simple material from the
viewpoint of irreversible thermodynamics. Because of the complexity of these problems, most results reported in
the literature are found in numerical approximation [11–13].

In this work, we consider the problem of a viscoelastic trimaterial combined with a point heat source and a
point heat sink. The term, “trimaterial”, as defined here, represents an infinite solid composed of three dissimilar
materials bonded along two parallel interfaces. Based on the method of analytical continuation in conjunction with
the alternate technique, the trimaterial solution can be derived in a series form from the corresponding homogeneous
solution. A variety of problems (such as the bimaterial problem, or the thin layer bonded to a half plane, or the finite
strip of thin film, etc.), can be treated as special cases of the present study.

The general solution of the temperature field T , the total heat flux Q, the displacement derivatives and stresses
for a thermoelastic medium are

T = 1

2

[
θ(z) + θ̄ (z̄)

]
, (1)

Q = −k

2

[
θ(z) − θ̄ (z̄)

]
, (2)

2G(u′
1 + u′

2) = κ�(z) − �̄(z̄) − (z − z̄)�̄′(z̄) + 2Gβθ(z), (3)

σ2 − iσ12 = �(z) + �̄(z̄) + (z − z̄)�̄′(z̄), (4)

where z = x1 + ix2 denotes the complex coordinate, and θ(z) is a complex temperature function. A bar over the
variable denotes the conjugate of a complex, number or variable, and a prime indicates the derivative with respect
to its argument; k and G denote the heat conductivity and elastic shear modulus, respectively. Furthermore, the
material constants κ and β are defined as κ = 3−4ν and β = (1+ν)α for plane strain, and κ = (3−ν)/(1+ν) and
β = α for plane stress, where ν is Poisson’s ratio, and α is the coefficient of thermal expansion. The components of
displacements and stresses can be expressed in terms of two complex stress functions, �(z) and �(z), associated
with a temperature function, θ(z), when the thermal effect is considered.

2 Temperature field of a trimaterial

Referring to Fig. 1, consider a dissimilar triple-layer medium with two perfectly bonded interfaces L(x2 = 0) and
L∗(x2 = h). Suppose that the regions Da(x2 > h), Db(h > x2 > 0), and Dc(x2 < 0) are occupied by materials a,
b, and c, respectively.

For the first argument, we regard regions Da and Db to be composed of the same material b and region Dc of
material c. If θ0(z) signifies a potential for a singularity in an infinite homogeneous plane of material b, then θc1(z)

(analytic in Dc) and θ1(z) (analytic in Da ∪ Db) are introduced to satisfy the continuity conditions across L as

θ(z) =
{

θ0(z) + θ1(z), z ∈ Da ∪ Db

θc1(z), z ∈ Dc
. (5)
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Thermal stresses in a viscoelastic trimaterial 101

The continuity of temperature and total heat flux across the interface, L, requires

θ0(x1) + θ1(x1) + θ̄0(x1) + θ̄1(x1) = θc1(x1) + θ̄c1(x1),

kb[θ0(x1) + θ1(x1)] − kb[θ̄0(x1) + θ̄1(x1)] = kcθc1(x1) − kcθ̄c1(x1). (6)

Through standard analytic-continuation arguments it follows that

θ1(z) + θ̄0(z) = θ̄c1(z), z ∈ Da ∪ Db, θ̄1(z) + θ0(z) = θc1(z), z ∈ Dc (7)

and

kbθ1(z) − kbθ̄0(z) = −kcθ̄c1(z), z ∈ Da ∪ Db, −kbθ̄1(z) + kbθ0(z) = kcθc1(z), z ∈ Dc. (8)

Uncoupling Eqs. 7 and 8, we obtain

θ1(z) = 	cbθ̄0(z), z ∈ Da ∪ Db, θc1(z) = 
cbθ0(z), z ∈ Dc (9)

with

	cb = kb − kc

kb + kc

, 
cb = 2kb

kc + kb

. (10)

Since this result is based on the assumption that region Da is made up of material b, it cannot satisfy the continuity
conditions at the interface L∗, which lies between material a and b.

For the second argument, we assume regions Db and Dc are made up of the same material b, and region Da is
composed of material a. Additional terms, θb1(z) (analytic in Db ∪ Dc) and θa1(z) (analytic in Da), are introduced
to satisfy the continuity conditions across the interface L∗ such that

θ(z) =
{

θa1(z), z ∈ Da

θ0(z) + θ1(z) + θb1(z), z ∈ Db ∪ Dc
. (11)

Similarly, the continuity of the temperature and the total heat flux across the interface L∗ requires

θ0(x1 + ih) + θ1(x1 + ih) + θb1(x1 + ih) + θ̄0(x1 − ih) + θ̄1(x1 − ih) + θ̄b1(x1 − ih)

= θa1(x1 + ih) + θ̄a1(x1 − ih)

and

kb[θ0(x1 + ih) + θ1(x1 + ih) + θb1(x1 + ih)] − kb[θ̄0(x1 − ih) + θ̄1(x1 − ih) + θ̄b1(x1 − ih)]
= kaθa1(x1 + ih) − kaθ̄a1(x1 − ih). (12)

According to analytic continuation, this leads to the results,

θ0(z + ih) + θ1(z + ih) + θ̄b1(z − ih) = θa1(z + ih), z ∈ Da,

θ̄0(z − ih) + θ̄1(z − ih) + θb1(z + ih) = θ̄a1(z − ih), z ∈ Db ∪ Dc
(13)

and

kbθ0(z + ih) + kbθ1(z + ih) − kbθ̄b1(z − ih) = kaθa1(z + ih), z ∈ Da,

− kbθ̄0(z − ih) − kbθ̄1(z − ih) + kbθb1(z + ih) = − kaθ̄a1(z − ih), z ∈ Db ∪ Dc.
(14)

Uncoupling Eqs. 13 and 14, we obtain

θa1(z) = 
ab[θ0(z) + θ1(z)], z ∈ Da, θb1(z) = 	ab[θ̄0(z − 2ih) + θ̄1(z − 2ih)], z ∈ Db ∪ Dc (15)

with coefficients,


ab = 2kb

ka + kb

, 	ab = kb − ka

kb + ka

. (16)

Since this result is based on the assumption that region Dc is made up of the same material b, it cannot satisfy the
continuity conditions at the interface L.
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For the third argument, we again assume Da and Db are made up of the same material b, and region Dc is
composed of material c. Additional terms, θ2(z) (analytic in Da ∪Db) and θc2(z) (analytic in Dc) are introduced to
satisfy the continuity conditions across the interface L. By using a way similar to the previous approach, we can let

θ(z) =
{

θb1(z) + θ2(z), z ∈ Da ∪ Db

θc2(z), z ∈ Dc
(17)

and thereby obtain

θ2(z) = 	cbθ̄b1(z), z ∈ Da ∪ Db

θc2(z) = 
cbθb1(z), z ∈ Dc.
(18)

The method of analytic continuation is repeatedly performed across the two interfaces to achieve the additional
terms; θai(z), θbi(z), θci(z) and θi(z), for i = 2, 3, 4 . . . . Consequently, we find the complete solution of θ(z) as

θ(z) =
⎧
⎨

⎩

θa(z), z ∈ Da

θ0(z) + θba(z) + θbc(z), z ∈ Db

θc(z), z ∈ Dc

(19)

with

θa(z) =
n∑

i=1

θai(z) = 
abθ0(z) + 
ab

n∑

i=1

θi(z),

θba(z) =
n∑

i=1

θbi(z) = 	abθ̄0(z − 2ih) + 	ab

n∑

i=1

θ̄i (z − 2ih),

θbc(z) =
n∑

i=1

θi(z),

θc(z) =
n∑

i=1

θci(z) = 
cbθ0(z) + 
cb

n∑

i=1

θbi(z) = 
cbθ0(z) + 
cb	abθ̄0(z − 2ih)

+
cb	ab

n∑

i=1

θ̄i (z − 2ih), (20)

where

θi(z) =
⎧
⎨

⎩

	cbcbθ̄0(z), i = 1
	cb	ab[θ0(z − 2ih) + θ1(z + 2ih)], i = 2
	cb	abθi−1(z + 2ih), i ≥ 3

(21)

For a point heat source of intensity q0 located at the point zs , and a point heat sink of the same intensity located at
the point zk , the potential of the corresponding homogeneous problem is

θ0(z) = −qo

2πkb

log

(
z − zs

z − zk

)
. (22)

Note that Eq. 19 represents the solution when the singularities are located in region Db. For the singularities located
in other regions, the solution can also be found by using the same procedure.

3 Stress field of a trimaterial

Consider the stress field of a dissimilar triple-layer medium, with singularities located in the middle layer; see
Fig. 1. Similar to the previous approach, we first regard regions Da and Db as being composed of the same material
b, and region Dc made of material c. Let

�(z) =
{

�0(z) + �1(z), z ∈ Da ∪ Db

�c1(z), z ∈ Dc
,
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Thermal stresses in a viscoelastic trimaterial 103

�(z) =
{

�0(z) + �1(z), z ∈ Da ∪ Db

�c1(z), z ∈ Dc
, (23)

where �0(z) and �0(z) are the corresponding homogeneous solutions, while �1(z), �c1(z), �1(z), and �c1(z) are
analytic functions. The continuity of traction and displacement across L yields

�c1(x) + �̄c1(x) = �0(x) + �1(x) + �̄0(x) + �̄1(x),

1

2Gc

[κc�c1(x) − �̄c1(x)] + βcθc(x) = 1

2Gb

[κb�0(x) + κb�1(x) − �̄0(x) − �̄1(x)] (24)

+βb[θ0(x) + θba(x) + θbc(x)].
By standard analytic continuation arguments, it follows

�̄c1(z) = �1(z) + �̄0(z), z ∈ Da ∪ Db,

�c1(z) = �0(z) + �̄1(z), z ∈ Dc (25)

and

− �̄c1(z)

2Gc

= 1

2Gb

[κb�1(z) − �̄0(z)] + βbθba(z), z ∈ Da ∪ Db,

κc�c1(z)

2Gc

+ βcθc(z) = 1

2Gb

[κb�0(z) − �̄1(z)] + βb[θ0(z) + θbc(z)], z ∈ Dc.

(26)

From Eqs. 25 and 26 we can find

�1(z) = Vbc�̄0(z) + θ1bc(z), �c1(z) = (Vbc + 1)�0(z) + θ̄1bc(z), �1(z) = Ubc�̄0(z) + θ̄2bc(z),

�c1(z) = (Ubc + 1)�0(z) + θ2bc(z),

where

Vbc = Gc − Gb

Gb + Gcκb

, Ubc = Gcκb − Gbκc

Gbκc + Gc

, θ1bc(z) = −2GbGcβb

Gb + Gcκb

θbc(z),

θ2bc(z) = 2GbGc

Gbκc + Gc

{βb[θ0(z) + θba(z)] − βcθc(z)} (27)

and the homogeneous solutions are

�0(z) = Gbq0βb

πkb(κb + 1)
log

(
z − zs

z − zk

)
, �0(z) = Gbq0βb

πkb(κb + 1)

[
log

(
z − zs

z − zk

)
+ z − z̄s

z − zs

− z − z̄k

z − zk

]
. (28)

Since the result is based on the assumption that Da is made up of material b, it cannot satisfy the continuity condition
across L∗.

Next, we assume regions Db and Dc are made up of the same material b, and region Da is composed of material
a. Additional terms, �b1(z) and �b1(z) (analytic in Db∪Dc) and �a1(z) and �a1(z) (analytic in Da) are introduced
to satisfy the continuity conditions across the interface L∗, so that

�(z) =
{

�a1(z), z ∈ Da

�1(z) + �b1(z), z ∈ Db ∪ Dc
,

�(z) =
{

�a1(z), z ∈ Da

�1(z) + �b1(z), z ∈ Db ∪ Dc
.

(29)

From the continuity of traction and displacement across L∗ and standard analytic continuation arguments, we find

�b1(z) = Vba[�̄1(z − 2ih) + 2ih�̄′
1(z − 2ih)] + θ1ba(z),

�a1(z) = (Vba + 1)[�1(z) − 2ih�′
1(z)] + 2ih�′

a1(z) + θ̄1ba(z − 2ih), (30a)

�b1(z) = Uba�̄1(z − 2ih) + 2ih�′
a1(z) + θ̄2ba(z − 2ih), �a1(z) = (Uba + 1)�1(z) + θ2ba(z),
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104 G. A. Porter et al.

where

Vba = Ga − Gb

Gb + Gaκb

, Uba = Gaκb − Gbκa

Gbκa + Ga

,

θ1ba(z) = −2GaGbβb

Gb + Gaκb

θba(z), θ2ba(z) = 2GaGb

Gbκa + Ga

{βb[θ0(z) + θbc(z)] − βaθa(z)}. (30b)

The method of analytical continuation is repeatedly performed across the two interfaces to generate the additional
terms. Since all these procedures are similar to the previous approach, the details are omitted here. The final results
are as follows.

�(z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n∑

i=1
�ai(z), z ∈ Da

�0(z) +
n∑

i=1
�bi(z) +

n∑

i=1
�i(z), z ∈ Db

n∑

i=1
�ci(z), z ∈ Dc

,

�(z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n∑

i=1
�ai(z), z ∈ Da

�0(z) +
n∑

i=1
�bi(z) +

n∑

i=1
�i(z), z ∈ Db

n∑

i=1
�ci(z), z ∈ Dc

.

(31)

These include the following summations.

n∑

i=1

�ai(z) =
n∑

i=1

(Uba + 1)�i(z) + θ2ba(z),

n∑

i=1

�bi(z) =
n∑

i=1

{Vba[�̄i(z − 2ih) + 2ih�̄′
i (z − 2ih)]} + θ1ba(z),

n∑

i=1

�i(z) =
n∑

i=1

Vbc�̄i−1(z) + θ1bc(z),

n∑

i=1

�ci(z) =
n∑

i=1

(Ubc + 1)�i−1(z) + θ2bc(z),

n∑

i=1

�ai(z) =
n∑

i=1

{(Vba + 1)[�i(z) − 2ih�′
i (z)] + 2ih�′

ai(z)} + θ̄1ba(z − 2ih),

n∑

i=1

�bi(z) =
n∑

i=1

{Uba�̄i(z − 2ih) + 2ih�′
ai(z)} + θ̄2ba(z − 2ih),

n∑

i=1

�i(z) =
n∑

i=1

Ubc�̄i−1(z) + θ̄2bc(z),

n∑

i=1

�ci(z) =
n∑

i=1

(Ubc + 1)�i−1(z) + θ̄1bc(z). (32)

Note that the homogeneous solutions indicated in Eq. 28 are for the singularities located in region Db. For the
singularities located in other regions, the solution can also be found by using the same procedure.

4 Thermoviscoelastic formulation of a trimaterial

For a linear thermoviscoelastic material, the strains or stresses at any given time are the sum of the individual strain
or stress increments through the respective time intervals during which they have been applied. By Boltzman’s
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Thermal stresses in a viscoelastic trimaterial 105

superposition principle, the relationship between strains and stresses can be written in the form of a hereditary
integral [10]

εm(τ) = s̃mn(0)σn(τ ) +
∫ τ

0
s̃′

mn(τ − ξ)σn(ξ)dξ + α̃m(0)T (τ ) +
∫ τ

0
α̃′

m(τ − ξ)T (ξ)dξ, for m, n=1, 2, . . . , 6.

(33)

Here, ξ is the dummy variable regarding the argument in question. Further τ = tb(T ) is designated as the reduced
time, and the function b(T ) indicates the temperature shift function which characterizes the time-dependent prop-
erties of the thermorhelogically simple material [10]. By using the Laplace transform, we obtain Eq. 33 as follows:

ε̂m(p) = ŝmn(p)σ̂n(p) + α̂m(p)T̂ (p), (34)

where ŝmn(p) = p ˆ̃smn(p), and α̂m = p ˆ̃αm(p). Equation 34 is analogous to the thermoelastic constitutive equation.
Consequently, similar to the thermoelastic problem in the previous discussion, the thermoviscoelastic field can be
written as

2Ĝ(û′
1 + û′

2) = κ�̂(ẑ) − ˆ̄�( ˆ̄z) − (ẑ − ˆ̄z) ˆ̄
�′( ˆ̄z) + 2Ĝβ̂θ̂ (ẑ), (35)

σ̂22 − iσ̂12 = �̂(ẑ) + ˆ̄�( ˆ̄z) + (ẑ − ˆ̄z) ˆ̄
�′( ˆ̄z), (36)

where all coefficients in Eqs. 35 and 36 can be obtained by simple alternation from the previous thermoelastic
definition. Then, the real-time solution can be found numerically by the direct inverse Laplace transform

ϕi (z) = 1

2π i

∫ ρ+i∞

ρ−i∞
ϕ̂i (ẑ)e

pτ dp = R0 +
m∑

i=1

Rie
−ωiτ , (37)

where R0 is a real constant obtained from the boundary condition at τ → ∞ and the Ri terms are to be evaluated
from the set of linear algebraic equations,
[
ϕ̂i (ẑ) − R0

p

]

p→ai

=
[

m∑

i=1

Ri

p + ωi

]

p→ai

, (38)

where −ωi denotes the poles of ϕ̂(ẑ) in the p-domain (except the origin), and ai may be any arbitrary constant
excluding the poles. Equation 38 represents a system of m linear algebraic equations to be used to determine the m

unknown coefficients Ri in the assumed form of the solution in Eq. 37.

5 Numerical results

Some typical examples of the interfacial stresses of a trimaterial subjected to a pair of a point heat source and a sink
(see Fig. 1) are shown in this section.

5.1 Interfacial stress problem—general case for a trimaterial

From Eq. 33, the general thermoviscoelastic constitutive equation can be expressed as

εm(τ) = s0
mn

[

σn(τ) +
N∑

i=1

∫ τ

0
gi(τ − ξ)σn(ξ)dξ

]

+ α0
m

[

T (τ) +
N∑

i=1

∫ τ

0
gti(τ − ξ)T (ξ)dξ

]

, (39)

where

gi(τ ) = ηie
−τ/λi , gti(τ ) = ηtie

−τ/λti . (40)
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106 G. A. Porter et al.

For a thermorheologically simple material associated with a Kelvin–Maxwell three-parameter model, Eq. 39
becomes

εm(τ) = s0
mn

[
σn(τ) +

∫ τ

0
g(τ − ξ)σn(ξ)dξ

]
+ α0

m

[
T (τ) +

∫ τ

0
gt (τ − ξ)T (ξ)dξ

]
, (41)

where the reduced time, τ = tb(T ) is defined in Eq. 33. Also,

g(τ) = ηe−τ/λ, η = s∞
mn − s0

mn

λs0
mn

, gt (τ ) = ηte
−τ/λt , ηt = α∞

m − α0
m

λtα0
m

, (42)

where λ and λt indicate the relaxation constants, and s0
mn, s∞

mn, α0
m and α∞

m denote the creep compliance and thermal
expansion at t = 0 and ∞, respectively. For an isothermal uni-axial constant load σ0, the thermoviscoelastic model
in Eq. 41 indicates that ε(τ ) approaches to s0

mnσ0 at τ = 0, and converges to s∞
mnσ0 when τ → ∞. It is also clear

that s0
mn = s∞

mn, α0
m = α∞

m and η = ηt = 0 for a thermoelastic material. Moreover, ε(τ ) approaches ε(∞) rapidly
as the relaxation constants λ and λt decrease. Taking the Laplace transform with respect to the reduced time τ , we
may write Eq. 41 as follows:

ε̂m(p) = s0
mn

(
1 + η

p + 1/λ

)
σ̂n(p) + α0

m

(
1 + ηt

p + 1/λt

)
T̂ (p). (43)

For an isotropic material, the relations between elastic compliances and the modulus are described by

s0
mn = 1

G

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

1
2(1+ν)

−ν
2(1+ν)

−ν
2(1+ν)

0 0 0
1

2(1+ν)
−ν

2(1+ν)
0 0 0

1
2(1+ν)

0 0 0
1 0 0

sym. 1 0
1

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

, (44)

where G and ν denote the elastic shear modulus and Poisson’s ratio, respectively. Meanwhile, the thermal-expansion
coefficients are

α0
m = [

α α α 0 0 0
]T

. (45)

In the following discussion, we assume the following values. For the elastic constants of material a(Da), we have,

G = Ga, ν = 0.3, k = ka, α = αa, λ = λt , η = ηt = 0, b(T ) = 1.

For the constants of material b(Db), we have,

G = Gb, ν = 0.3, k = kb, α = αb, λ = λt , η = ηt = 0.5/λ, b(T ) = b1eb2(T /T0), b1 = 1, b2 = 1,

T0 = 298,

where T0 denotes the reference temperature. For the constants of material c(Dc), we have,

G = Gc, ν = 0.3, k = kc, α = αc, λ = λt , η = ηt = 0, b(T ) = 1.

The material constants not mentioned here, except the symmetric terms, are assumed to be zero for an isotropic
material. Note that, when η = ηt = 0 of the material a(Da) or c(Dc), it indicates that the material properties
of the medium are independent of time, or that the medium is assumed to be elastic for the sake of simplicity.
In the following cases, let the point heat source be located at zs(xs1 = −h, xs2 = h/2), and the heat sink at
zk(xk1 = h, xk2 = h/2).

5.2 Specific case 1—when a(Da) and c(Dc) are the same material

Figure 2 shows the interfacial stresses along L(x2 = 0) at t = 0, with Ga = Gc, ka = kc, αa = αc, Gc/Gb = 1.2,
kc/kb = Gc/Gb, and αc/αb = Gb/Gc. It indicates that the normal stress is skew-symmetric with respect to the
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Fig. 1 A trimaterial with singularities in the middle layer Fig. 2 Interfacial stresses of a triple-layer along L(x2 = 0) at
t = 0, with Ga = Gc, ka = kc, αa = αc, Gc/Gb = 1.2,
kc/kb = Gc/Gb, and αc/αb = Gb/Gc

Fig. 3 Evolution of interfacial normal stresses of a triple-layer
on x2 = 0, with Ga = Gc, ka = kc, αa = αc, Gc/Gb = 1.2,
kc/kb = Gc/Gb, and αc/αb = Gb/Gc

Fig. 4 Evolution of interfacial shear stresses of a triple-layer on
x2 = 0, with Ga = Gc, ka = kc, αa = αc, Gc/Gb = 1.2,
kc/kb = Gc/Gb, and αc/αb = Gb/Gc

x2-axis, which becomes positive at the heat-sink side and negative at the heat-source side. The maximum value
of the normal stress occurs at x1/h = ±1.2. Meanwhile, the shear stress is symmetric with respect to the x2-axis
and positive in the region between the heat source and sink. It also shows that the maximum shear stress occurs
at x1/h = ±0.6. Note that the positive or negative interfacial stresses depend on the choice of material properties
for the trimaterial. The results agree with the thermoelastic solution of Chao and Chen [8]. The first five terms
of the series solution are obtained in this work. In order to demonstrate the convergence of the series solution,
the contribution of the stresses for the first five terms of a series solution is 73.35%, 18.68%, 4.030%, 0.837%
and 0.103%, respectively. The contribution accounts for the ratio of each term to the summation of the first five
terms of a series solution. The leading three terms have over 99% contribution, making the series solution rapidly
convergent. Figure 3 shows the evolution of interfacial normal stresses at points x1/h = 0.5, 1, 1.5, and 2(x2 = 0),
respectively. It indicates the normal stresses decrease with time because of thermoviscoelastic effects of material b.
Besides, the normal stress vanishes at the point x1/h = 0. Figure 4 shows the evolution of interfacial shear stresses
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at points x1/h = 0, 0.5, 1, 1.5, and 2(x2 = 0). It indicates that the absolute value of the shear stress decreases with
time.

5.3 Specific case 2—the thin-film problem

The trimaterial problem can be reduced to a finite thickness film/substrate problem by letting the upper or lower
medium vanish. Figure 5 shows the interfacial stresses of a film/substrate, assuming Ga → 0, ka → 0, and
Gc/Gb = 1.2, kc/kb = Gc/Gb, αc/αb = Gb/Gc. It shows that the interfacial stresses for the film/substrate prob-
lem have the same tendency as those in the trimaterial problem (comparing to Fig. 2), except that the values of the
film/substrate problem (Fig. 5) are larger. This happens because the free surface of the finite-thickness film/substrate
(L∗) is insulated (ka = 0), leaving the heat to flow to the substrate, resulting in an increase of the temperature on
the interface L. The results also agree well with the thermoelastic solution of Chao and Chen [8]. Figure 6 shows
the evolution of interfacial stresses of a film/substrate at x1/h = 0.5, 1, 1.5, and 2. It shows the normal stresses
decreasing with time at the beginning, and then converging to constants after a period of time. Figure 7 shows

Fig. 5 Interfacial stresses of a film/substrate along L(x2 = 0)

at t = 0, with Gc/Gb = 1.2, kc/kb = Gc/Gb, and αc/αb =
Gb/Gc

Fig. 6 Evolution of interfacial normal stresses of a film/sub-
strate, with Gc/Gb = 1.2, kc/kb = Gc/Gb, and αc/αb =
Gb/Gc

Fig. 7 Evolution of
interfacial shear stresses of
a film/substrate, with
Gc/Gb = 1.2,
kc/kb = Gc/Gb, and
αc/αb = Gb/Gc
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the interfacial shear stresses of a film/substrate, which also indicates that the absolute values of the shear stresses
decrease with time because of the thermoviscoelastic effect of material b.

6 Conclusions

A thermoviscoelastic analysis of a dissimilar trimaterial has been presented. Using analytic continuation associated
with the successive alternating technique, the solution can be found in terms of a rapidly convergent series. The
rate of convergence of the thermal potential depends on the bimaterial constants 	cb, 
cb, 	ab, and 
ab, while the
stress function depends on Vcb, Ucb, Vab, and Uab. The present series solutions converge to the true solution since
those bimaterial constants are always less than one. The convergence rate becomes more rapid as the differences of
the elastic constants of the neighboring materials get smaller. Even if materials a and/or c are rigid or non-existent,
the solution remains valid. Moreover, the thermoviscoelastic analysis of a triple-layered medium, as well as that of
a film/substrate, shows that the interfacial stresses induced by a pair of heat source and sink decrease with time.
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